
www.ajhg.org The American Journal of Human Genetics Volume 81 December 2007 1289

REPORT

Contribution of SHANK3 Mutations to Autism Spectrum Disorder
Rainald Moessner,* Christian R. Marshall,* James S. Sutcliffe, Jennifer Skaug, Dalila Pinto,
John Vincent, Lonnie Zwaigenbaum, Bridget Fernandez, Wendy Roberts, Peter Szatmari,
and Stephen W. Scherer

Mutations in SHANK3, which encodes a synaptic scaffolding protein, have been described in subjects with an autism
spectrum disorder (ASD). To assess the quantitative contribution of SHANK3 to the pathogenesis of autism, we determined
the frequency of DNA sequence and copy-number variants in this gene in 400 ASD-affected subjects ascertained in
Canada. One de novo mutation and two gene deletions were discovered, indicating a contribution of 0.75% in this
cohort. One additional SHANK3 deletion was characterized in two ASD-affected siblings from another collection, which
brings the total number of published mutations in unrelated ASD-affected families to seven. The combined data provide
support that haploinsufficiency of SHANK3 can cause a monogenic form of autism in sufficient frequency to warrant
consideration in clinical diagnostic testing.
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Autism (MIM 209850) is a neurodevelopmental disorder
that manifests within the first 3 years of life. Narrowly
defined “autism” has a population prevalence of 1.5–2
cases per 1,000 children and represents the classic per-
vasive developmental disorder (PDD).1 The group of PDDs
that is also termed “autism spectrum disorders” (ASDs)
includes autism, as well as PDD–not otherwise specified
(PDD-NOS) and Asperger syndrome. ASDs have a preva-
lence of ∼6 cases per 1,000 children.1 The three core char-
acteristics of autism are impairments of reciprocal social
interactions, impairments in communication, and a re-
stricted range of behaviors and interests. In contrast to
those with autism, patients with Asperger syndrome differ
in that they show an absence of clinically significant cog-
nitive and language delay before age 3 years.2

ASDs are etiologically heterogeneous. They are associ-
ated with a recognized cause in ∼10% of cases, most com-
monly with fragile X syndrome (MIM 300624), tuberous
sclerosis (MIM 191100), and cytogenetically detectable
chromosome abnormalities.3,4 The most frequent cyto-
genetic anomaly is maternally derived duplication of chro-
mosome 15q11-q13 (1%–3%)4; however, numerous other
chromosomal regions are described,3,4 with a higher fre-
quency of events observed in syndromic forms of ASD.5,6

Heritability estimates for ASDs, as determined from twin
and family studies, are ∼90%,7 and a linkage scan from an
international collaborative study has mapped putative risk
loci in families with at least two affected individuals.8 The
same study also reveals that submicroscopic copy-number

variants (CNVs) can have a causal or susceptibility-related
role. There is also the suggestion that de novo CNVs may
be a more significant risk factor in sporadic compared with
familial forms of ASD.9

ASD-associated mutations have been reported in two
neuroligin genes (NLGN3 and NLGN4) on the X chro-
mosome,10 RPL10 at Xq28,11 and SHANK3 (also termed
“ProSAP2”) on chromosome 22q13.12 There have been
other associations (reviewed in the work of Persico and
Bourgeron13), but they represent extremely rare events,
usually of unconfirmed pathogenicity (or associated with
a comorbid phenotype), and, in most instances, they have
not yet been validated by other studies.

The SHANK3 gene encodes a protein of the postsynaptic
density (PSD) of excitatory synapses, where it may func-
tion as a master scaffolder forming large sheets that may
represent the platform for the construction of the PSD
complex.14 At the PSD complex, SHANK3 has been shown
to bind to neuroligins,15 which, together with the neurex-
ins, form a complex at glutamatergic synapses. SHANK3
was first identified in rats16 and then in humans17 as a
gene expressed predominantly in cerebral cortex and cer-
ebellum. Moreover, SHANK3 was found disrupted by a
de novo balanced translocation in a child with severe
expressive-language delay, mild mental retardation, and
other features of the 22q13.3 deletion syndrome (MIM
606232).17 Durand and coworkers12 then identified two
alterations in SHANK3 in subjects with an ASD but not
observed in control individuals. One is a de novo insertion
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of a G nucleotide in exon 21 of SHANK3, which leads to
a frameshift and presumed loss of function. Since this var-
iant was present in two affected siblings, it was thought
to result from germline mosaicism in the mother. A second
alteration found in an unrelated family was a de novo
deletion of terminal 22q13, with the breakpoint in intron
8 of SHANK3. The same study also reported a larger 800-
kb deletion in a girl with an autism spectrum phenotype
that includes severe language delay. Her brother with As-
perger syndrome had a partial trisomy of terminal 22q;
these unbalanced anomalies were the consequence of a
paternal translocation.

Because significant genetic and functional data impli-
cate SHANK3 as a potential monogenic cause of ASDs, we
sought to further assess the types and frequency of mu-
tations involved and the associated phenotypic outcomes.
We therefore screened a sample of 400 probands with an
ASD (and, in some cases, their families) for mutations in
SHANK3, using Sanger dideoxy DNA sequencing and
microarray-based comparative intensity analysis. As dis-
cussed below, we discovered variants in nearly 1% of these
cases, further implicating SHANK3 and the neurexin-neu-
roligin complex in ASDs.

The 400 unrelated subjects with ASD were ascertained
at The Hospital for Sick Children in Toronto (225) and in
child diagnostic centers in Hamilton, Ontario (100), and
in St. John’s, Newfoundland (75). All subjects met Autism
Diagnostic Interview–Revised (ADI-R) and Autism Diag-
nostic Observation Schedule (ADOS) criteria conclusively
or on a clinical best estimate.18 Affected and unaffected
siblings were also assessed whenever possible, and 249
(62%) of these families had more than one child with an
ASD. Blood samples were drawn from the index patients
with ASD and their relatives, to facilitate ascertainment
of the mode of inheritance of all detected variants. Most
index patients (75%) were screened for fragile X mutations
and were karyotyped. Wherever possible, experiments
were performed on blood-derived genomic DNA (80%);
otherwise, DNA from cell lines was used. Results from
these families are described in table 1 and figure 1. Find-
ings were confirmed on blood-derived genomic DNA or
cells, apart from the exon 9 variant S341L, which was
confirmed by its inheritance from the father.

The genomic sequence of SHANK3 was initially derived
by comparison of the rat Shank3 gene with human ESTs
listed in the UCSC Genome Browser, as well as that de-
scribed by Wilson et al.21 To ensure comparability of data,
we maintained the nomenclature of the coding sequence
used by Durand et al.12 Exons 1 and 11 could not be re-
producibly amplified, even on repeated attempts with use
of various conditions (the same exons posed problems
elsewhere21). Primer sequences and PCR conditions used
for amplification are available on request.

Samples were initially assessed for CNV content with
use of signal intensities obtained from the Affymetrix
500K SNP array set. The complete data on all 400 subjects

with ASD will be presented elsewhere (authors’ unpub-
lished data), and only those data relevant to families with
SHANK3 CNVs are described here. The techniques used
for validation of the initial Affymetrix comparative inten-
sity analysis are described in figure 2, and all data were
compared with the Database of Genomic Variants22 to as-
sess relevance with respect to population controls. The
methodologies for calling the CNVs are (or will be) de-
scribed elsewhere (authors’ unpublished data).20,23 Quan-
titative PCR analysis included SYBR green methodology
(Stratagene)24 and FISH experiments.25 A 12-marker foren-
sic panel (Identifiler [Applied Biosystems]) was employed
to ascertain that the parents in ASD-affected family 4 are
indeed biological parents. Estimation of population an-
cestry of the subjects described in table 1 was obtained by
STRUCTURE software,26,27 with use of 780 autosomal SNPs
spaced at 3.5–4 Mb across the genome. For comparison,
analysis also included genotypes from unrelated individ-
uals representing populations from the HapMap collec-
tion (African, European, and Asian).28

Through DNA sequencing of the majority of the coding
sequences and splice junctions of SHANK3, we identified
10 novel nonsynonymous variants (table 1). One of these,
found in the index patient of family ASD4, represents an
apparent de novo mutation, with an A962G exchange in
exon 8 leading to a heterozygous Q321R substitution. This
change, found only in this single subject and in neither
parent nor an unaffected sibling, was also absent from 372
control chromosomes and has not been described in any
of the cases or controls reported elsewhere.12 The gestation
and delivery, at 38 wk, of this female subject were unevent-
ful, apart from an in vitro–fertilization procedure. She es-
tablishes no eye contact and displays narrow interests and
verbal repetitive behaviors but understands complex in-
structions. The ADI exceeds the autism cutoff in all do-
mains (see table 2 for clinical information). Her younger
sister, who does not carry the mutation, is developing
normally.

The nine other novel nonsynonymous variants found
in patients with ASD but not in controls were inherited
from an unaffected parent. Four of these nonsynonymous
changes also occur in unaffected siblings, indicating that
these are likely not pathogenic. In the index subject of
family SK0203, we detected a heterozygous deletion of 15
nt in exon 21 that is predicted to eliminate 5 aa from the
protein. This deletion alteration was inherited from the
mother and was absent in the affected sibling, which sug-
gests that it is not pathogenic. The absence of an ASD in
the transmitting parent may reflect incomplete pene-
trance of the allele in question, but it could also suggest
an effect caused by other inherited alleles in the affected
family members.

From the CNV screen, two chromosomal deletions were
detected (table 1). In ASD-affected family 1 (ASD1), a
heterozygous deletion of ∼277 kb encompassing the
MAPK8IP2, ARSA, and SHANK3 genes was found in the



Table 1. Summary of SHANK3 DNA Sequence and Identified CNVs

Subject

DNA Variant or CNV

Sex of
Proband

Transmission
from

Family
Type Sibling Status

Population
Ancestry

Frequency
in ASD

No. of
Controls
TestedExon

Amino
Acid Nucleotide

SK0007 (ASD4) 8 Q321R A962G F De novo Simplex Absent in unaffected sibling Arabic Europeana 1 in 400 186
SK0042 9 S341L C1022T F Father Simplex Absent in unaffected sibling Europeana 1 in 400 57
SK0041 21 A970S G2908T M Father Simplex Present in unaffected sibling Europeana 1 in 250 100
SK0018 21 A1173T G3517A M Mother Multiplex Present in one of two affected siblings Mixedb,c 1 in 400 100
SK0059 21 P1263L C3788T M Father Simplex CEUb 1 in 400 100
MM0244 21 L1406V C4216G M Mother Multiplex Absent in affected sibling CEUb 1 in 400 100
SK0266 21 M1443T T4328C M Mother Simplex Present in one of two unaffected siblings CEUb 1 in 400 100
SK0203 21 Del of 5 aa Del 4358–4372 M Mother Multiplex Absent in affected sibling Mixedb,c 1 in 400 100
SK0225 22 G1557S G4669A M Father Simplex CEUb 1 in 400 200
SK0021 22 P1654T C4960A M Father Multiplex Present in unaffected sibling Mixedb,c 2 in 400 200
SK0202 22 P1654T C4960A M Mother Multiplex Present in one of two unaffected siblings CEUb 2 in 400 200
MM0109d (ASD1) 277-kb Del at 22q13.33; 1.4-Mb gain

at 20q13.33
F De novo Simplex Absent in two unaffected siblings CEUb 2 in 433 500e

NA0039d (ASD2f) 3.2-Mb Del at 22q13.31-33 due to an
unbalanced translocation der(22)
t(14;22)(q32.33;q13.31)

F Fatherg Simplex Sister with der(14) t(14;22)(q32.33;q13.31) has ADHD CEUb 2 in 433 500e

3524d (ASD3h) 4.4-Mb Del at 22q13.31-33 M De novo Multiplex Present in affected sister CEUb 500e

a Not assayed with 500K array; self reported ancestry.
b Ancestry estimated using STRUCTURE, where CEU indicates European.
c Individuals have mixed ancestry of CEU and Asian.
d CNVs (from National Center for Biotechnology Information build 35 coordinates) present in families are as follows: ASD1 has a 286-kb (189,538,747–189,825,000) paternally inherited gain at 4q35.2, a 224-kb

(190,742,803–190,967,000) paternally inherited gain at 4q35.2, a 1.66-Mb (18,427,100–20,089,400) maternally inherited gain at 15q11.2, a 1.25-Mb (21,441,805–22,688,093) maternally inherited gain at 16p12.2-12.1,
a 534-kb (40,555,289–41,089,766) paternally inherited loss at 17q21.31, a 1.4-Mb (60,949,339–62,377,000) de novo gain at 20q13.33, and a 277-kb (49,243,247–49,519,949) de novo loss at 22q13.33. ASD2 has a 3.2-
Mb (46,277,400–49,509,100) loss at 22q13.31-q13.33 due to unbalanced translocation. ASD3 has a 224-kb (82,972,800–83,197,200) maternally inherited gain at 12q21.31, a 1.4-Mb (103,544,000–104,968,000) paternally
inherited loss at 13q33.1-q33.2, a 34.2-kb (27,536,400–27,570,600) maternally inherited loss at 14q12, a 253-kb (34,307,200–34,560,000) maternally inherited gain at 16p11.1-p11.2, and a 4.4-Mb (45,109,800–
49,465,800) de novo loss at 22q13.31-q13.33. All CNV data have been submitted to the DECIPHER database. The CNVs should be compared with the Database of Genomic Variants to determine their status in the latest
version of the control data.

e No deletions of SHANK3 were present in European controls or in the HapMap sample controls, as assessed by 500K array CNV analysis.
f The family was described in the work of Prasad et al.19

g Has balanced translocation t(14;22)(q32.33;q13.31).
h The family was described in the work of Szatmari et al.8
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Figure 1. Pedigrees of the ASD-affected families with de novo
variants or unbalanced translocation derivatives. Arrows denote
the index subject. In ASD1, the proband has a de novo 277-kb
deletion at 22q13.33 and a de novo 1.4-Mb duplication at
20q13.33. In ASD2, the father carries a balanced translocation
t(14;22)(q32.33;q13.31); the elder daughter with ASD has inher-
ited the der(22) t(14;22)(q32.33;q13.31), whereas the younger
daughter with ADHD inherited the der(14) t(14;22)(q32.33;
q13.31). In ASD3, both children have a de novo 4.4-Mb deletion
at 22q13.31-33. In ASD4, the proband has a de novo Q321R mu-
tation. The diamond indicates three siblings without ASD who were
unavailable for sampling.

female proband but in neither parent nor in two unaf-
fected brothers (fig. 1). The proband has autism associated
with severe intellectual disability (table 2). She has global
developmental delay and could not be examined using
standard cognitive tests. She had been evaluated clinically
for Rett syndrome (MIM 312750) but had delayed devel-
opment from birth and no evidence of regression.

Interestingly, in addition to the de novo loss at 22q13.33
in the ASD1 proband, we detected a second de novo CNV
gain encompassing ∼1.4 Mb at 20q13.33. The gain was
not present in either of the unaffected siblings or controls.
There are 44 genes in the region, including some poten-
tially interesting functional candidates, such as KCNQ2,
CHRNA4, MYT1, and OPRL1. We also detected three other
CNVs (see table 1) in this sample not described (at the
time of writing) in the Database of Genomic Variants. Al-
though they are all inherited, they could also contribute
to the ASD etiology.

In ASD-affected family 2 (ASD2), the female index pa-
tient was found to carry a 3.2-Mb heterozygous deletion
of chromosome 22q13.31-33. We later determined that
this individual was described earlier as a case of mono-
somy 22q13,19 but further analysis here shows that the
22q13 deletion is due to an unbalanced 22q13.31-33 mon-
osomy: der(22) t(14;22)(q32.33;q13.31), as confirmed by

cytogenetic and FISH analysis. Her derivative chromo-
some is inherited from the father, who is phenotypically
normal and has a de novo balanced translocation: t(14;22)
(q32.33;q13.31). Her sister was found to have a partial
22q13.3 trisomy, which is due to inheritance of the other
derivative chromosome: der(14) t(14;22)(q32.33;q13.31).
The index patient has typical autism, with ADOS scores
on module 1 above the autism cutoffs and ADI-R scores
also above the autism cutoffs (table 2). The sister carrying
the reciprocal trisomic event received the diagnosis of at-
tention-deficit/hyperactivity disorder (ADHD) at age 5
years and was treated with stimulant medication at age
5–12 years. She has mild cognitive impairment.

ASD-affected family 3 was first examined in the Autism
Genome Project multiplex ASD study,8 and here we define
the deletion in the index patient to be 4.4 Mb in size and
occurring on the maternally inherited chromosome. The
affected male proband is nonverbal and has profound im-
pairment in social interaction. The same maternally de-
rived deletion was also present in the affected sister. The
deletion was not observed in either parent, suggesting a
mechanism of gonadal mosaicism in the mother (fig. 1).

The deletions encompassing SHANK3 were validated ex-
perimentally by quantitative PCR analysis and FISH (fig.
2). No deletions of SHANK3 were present in European con-
trols or in the HapMap sample controls, as assessed by
500K array CNV analysis. Conversely, 10 calls of 22q13.33
deletions described in the HapMap sample by BAC arrays20

and displayed in the Database of Genomic Variants were
determined to be false-positive results with use of quant-
itative PCR to represent true-positive results. Thus, the de-
letions encompassing SHANK3 described here are autism
specific and are not present in the control populations.

Our findings of de novo, apparently disorder-causing
mutations in 3 (0.75%) of 400 subjects with ASD (table 1
and fig. 3), along with those from the study by Durand
and colleagues,12 in which mutations were found in 3
(1.4%) of 222 subjects, suggest a combined discovery rate
of disorder-associated sequence changes or deletions in as
much as 1% of ASD cases. Our prevalence rate was ob-
tained from a well-characterized convenience sample and
should be replicated in other representative samples. We
note that the sequence characteristics of the SHANK3 gene
make it difficult to assay, and other mutations in our fam-
ilies could remain unidentified.

The observation in family ASD1 of a second de novo
duplication (in addition to the SHANK3 deletion) of ∼1.4
Mb encompassing ∼44 genes on chromosome 20q13.33
is also of interest. Genes encompassed by this duplication,
such as KCNQ2 (potassium channel important in neuron
excitability; diverse mutations cause benign familial neo-
natal convulsions type 129 and can be associated with de-
layed psychomotor development or mental retardation30),
CHRNA4 (encoding nicotinic acetylcholine receptor that
mediates fast signal transmission at synapses; mutations
appear to account for a proportion of the cases of noc-
turnal frontal-lobe epilepsy); MYT1 (myelin transcription
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Figure 2. A, Copy-number analysis of ASD3 showing 4.4-Mb deletion at 22q13.31-q13.33. The genomic coordinates are shown at the
top, with red dots and blue lines showing raw and smoothed intensities, respectively. The blue bar at the bottom is indicative of
homozygous SNP calls. B, Quantitative PCR results depicting 277-kb loss in ASD1, where both parents and siblings are copy neutral. C,
FISH analysis of the de novo deletion of the SHANK3 region in ASD1. The red signal (SHANK3 probe G248P86064C8) is deleted, and
the green signal is a control probe mapping to chromosome 14 (RP11-652N16). D, Sequencing showing de novo A962G change in the
ASD4 proband.

factor that is highly expressed in the developing brain31),
and OPRL1 (encoding opiate-like G-protein–coupled re-
ceptor that is thought to be involved in the regulation of
instinctive and emotional behaviors), could also contrib-
ute to severity of phenotype in this subject.32 Finally, we
report other inherited nonsynomymous sequence variants
(table 1 and fig. 3) that will need further investigation to
more definitively assess their possible role in ASD.33

From our data, however, there is no definitive genotype-
phenotype correlation that can yet be drawn, suggesting
that all ASDs are equal candidates for SHANK3 testing. The
observation that four of five of the de novo cases reported
here with SHANK3 alterations are female (see table 1, not-
ing that family ASD1 has two female siblings with ASD)
may have relevance, given the typical 4:1 male:female
ratio (Durand et al.12 reported five of nine as female).

Gonadal mosaicism may be an important general mech-
anism for the generation of de novo pathogenic CNV. Two
female siblings with autism were recently described as hav-
ing an identical CNV loss eliminating coding exons from
the neurexin 1 gene (NRXN1).8 This 300-kb deletion was

not present in either parent. Microsatellite analysis of the
siblings demonstrated an identical maternal chromosomal
segment but no paternal DNA. Thus, the likely explana-
tion for this deletion of NRXN1-coding exons is paternal
gonadal mosaicism. Another example from the same study
is an ∼1-Mb de novo duplication at 17p12 in a male-female
sib pair who had received ASD diagnoses.8 Given these
results and the maternal germline mosaicism described
elsewhere for SHANK3,12 both paternal and maternal
germlines may contribute to the formation of de novo
CNVs and to the pathogenesis of autism. Thus, although
the majority of ASD-associated CNVs observed may be in
apparently sporadic cases of ASD, de novo rearrangements
are not confined to simplex families. These observations
of de novo germline mutations in multiplex families help
to unify the phenomena of sporadic mutation and high
heritability of ASDs.

As discussed elsewhere,12,34,35 fine tuning of the gene ex-
pression of critical genes such as SHANK3 can be crucial
for the development of speech and language and/or social



Table 2. Description of Clinical Features of Probands with ASD and SHANK3 Mutations or CNVs

Characteristic

Results for Family and Index Patient

MM0109 (ASD1) NA0039 (ASD2) 3524 (ASD3) SK0007 (ASD4)

Sex F F M F

Exon 277-kb deletion; 1.4-Mb gain 3.2-Mb deletion 4.36-Mb deletion Q321R mutation

Delay:

Speech Nonverbal; no use of gestures or pointing Vocabulary of 50 words at age 16 years, but

uses mainly nonverbal communication

Nonverbal Stopped using language at age 2–2.5 years;

regained some words at age 3.5 years

Development Global developmental delay; poor self-help skills Global developmental delay; sat at age 13 mo;

walked at age 17 mo

Yes

Social interactions/hyperactivity/aggressive behavior Score of 29 on ADI social reciprocity; no joint

attention; not interested in peers; poor use

of eyes and facial expression to interact

socially

No eye contact; aversion to physical contact Profound impairment in social interaction;

hyperactivity and attention deficits,

treated with methylphenidate and ris-

peridone; aggression toward affected

sister; mild self-injurious behavior

No eye contact; very limited use of gestures;

social withdrawal; currently one friend with

developmental delay; severe inattention and

irritability, treated successfully with methyl-

phenidate and atomoxetine; mild self-injuri-

ous behaviors (biting and hair pulling)

Restricted/repetitive behaviors and interests Carries an object around all the time; score of 4

on ADI repetitive behaviors, Pica, sensitive

to sensory stimuli

Self-stimulatory behaviors, such as rubbing

clothes and sucking toys

Yes Fascination with window blinds; understands

complex instructions; limited reciprocal

conversation about narrow interests; verbal

repetitive behaviors; no motor stereotypes;

hair pulling

Dysmorphic signs Small head size; hypertelorism Obesity; soft facial dysmorphism with low fron-

tal hairline; submucous cleft palate with bifid

uvula

No

EEG results and seizures Generalized slowing Normal CT scan and EEG; history of febrile

seizures

Abnormal EEG, with bilateral epileptiform dis-

charges but no seizures; severe sleep disor-

der; normal CT scan

Instrument scores At age 7–8 years on Vineland, Communication

SSp30, AEp0–11; Daily Living SSp19,

AEp1–9; Social SSp41, AEp0–7

ADI-R p 23 (cutoff 10); ADOS-1p15 (autism

cutoff 12); WISC-IV nonverbal subtests �

TONI�2: IQ !50

ADI Social p 24; Communication p 13;

Repetitive p 6; Early Abnormal Devel-

opment p 5; ADOS scores: Communica-

tion p 6; Social p 14; Play p 4; Ster-

eotyped Behaviors and Restricted

Interests p 5

Above cutoff in all domains on ADI; border-

line ADOS; !1st percentile on old Leiter

Comments Born at 34 wk; birth weight 2,282 g Single umbilical artery; hand tremor; joint laxity Sensory defensiveness toward loud noises;

no self-injurious behaviors

Conceived by in vitro fertilization; parents are

first cousins

Family history Siblings unaffected; no family history of ASD Sister has ADHD One affected sister, family history other-

wise negative. The affected sister has

only a few words. She is noncompliant,

with daily temper tantrums when shifted

from a preferred to a nonpreferred

activity

No family history of ASD

NOTE.—AE p age equivalent; EEG p electroencephalogram; IQ p intelligence quotient; SS p standard score; TONI p test of nonverbal intelligence.



www.ajhg.org The American Journal of Human Genetics Volume 81 December 2007 1295

Figure 3. Mutations and variations of SHANK3. The top half gives
the location of the mutations and rare nonsynonymous variations
found in the present study, whereas the bottom half shows those
described elsewhere.12 De novo mutations are shown in bold. SH3
p Src homology-3 domain; PDZ p PDZ domain; H p homer–
binding site; C p cortactin-binding site; SAM p sterile a motif.

communication in humans. In family ASD2, described
here with unbalanced cytogenetic abnormalities inherited
from a paternal balanced translocation, the children de-
veloped different pathologies. Whereas the child who in-
herited the 22q13 deletion developed an ASD phenotype,
her sister who inherited a 22q13 partial trisomy presented
with ADHD. Similarly, in a family with a paternal balanced
translocation described by Durand and colleagues,12 the
daughter with a 22q13 deletion developed autism, where-
as her brother with a 22q13 partial trisomy, albeit the
diagnosis of Asperger syndrome, demonstrated precocious
language development. The terminal 3.2 Mb and 800 kb
were affected in the former and latter families, respective-
ly, which may explain the different outcomes observed.

Our frequency estimate for SHANK3 mutations is in line
with previous findings for other genes of the neurexin-
neuroligin-SHANK3 biochemical complex. Thus, putative
rare mutations have been described in the neuroligins
NLGN3 and NLGN4 in autism.10 The de novo deletion of
NRXN1-coding exons in an affected sibling pair is a rare
variant, since it was not detected in 1,167 other autism-
affected families with two or more affected individuals.8

Moreover, rare missense variants in the NRXN1 b signal
peptide found in ASD, although not de novo, were not
found in control individuals.36 Variants in the ribosomal
protein gene RPL10 have recently been described in two
ASD-affected pedigrees.11 RPL10 is located on Xq28, and
the variants (L206M and H213Q) were inherited from the
carrier mother and are thought to cause ASD in the hemi-
zygous state in the sons.11 In that study, 296 independent
ASD-affected families were investigated, yielding an ap-
parent frequency of pathogenic RPL10 variants of 0.68%.
At this stage, confirmation of the relevance of the RPL10
gene for ASD is required before routine clinical screening
of RPL10 in subjects with ASD can be recommended. Mu-
tations of NLGN3 and NLGN4 in ASD are apparently very
rare. An NLGN3 mutation has been found in only one
autism-affected family to date,10 and apparently patho-
genic variants of NLGN4 were detected in !1% of patients
with ASD.13

Neuroligins have been shown to bind to SHANK315 and

are required for the maturation of glutamatergic synap-
ses.37 Moreover, the neurexins are ligands of the neuroli-
gins, thus supporting a pathogenic construct of a network
of interrelated molecules, from the transsynaptic inter-
action between the neurexins and neuroligins to the post-
synaptic density complex that includes the SHANK3-scaf-
folding protein. Given that SHANK3 promotes the for-
mation, maturation, and enlargement of dendritic spines,38

a functional network or complex emerges in which per-
turbations at a number of potential molecules, acting
alone or in combination, may lead to a similar clinical
end point.
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Web Resources

The URLs for data presented herein are as follows:

Database of Genomic Variants, http://projects.tcag.ca/variation/
DECIPHER, http://www.sanger.ac.uk/PostGenomics/decipher/ (for

the Database of Chromosomal Imbalance and Phenotype in
Humans using Ensembl Resources)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for autism, fragile X syndrome, tuberous
sclerosis, 22q13.3 deletion syndrome, and Rett syndrome)
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